Wikipedia Article of the Day
Randomly selected articles from my personal browsing history
In mathematics, the two-sided Laplace transform or bilateral Laplace transform is an integral transform equivalent to probability's moment generating function. Two-sided Laplace transforms are closely related to the Fourier transform, the Mellin transform, the Z-transform and the ordinary or one-sided Laplace transform. If f(t) is a real- or complex-valued function of the real variable t defined for all real numbers, then the two-sided Laplace transform is defined by the integral B { f } ( s ) = F ( s ) = ∫ − ∞ ∞ e − s t f ( t ) d t . {\displaystyle {\mathcal {B}}\{f\}(s)=F(s)=\int _{-\infty }^{\infty }e^{-st}f(t)\,dt.} The integral is most commonly understood as an improper integral, which converges if and only if both integrals ∫ 0 ∞ e − s t f ( t ) d t , ∫ − ∞ 0 e − s t f ( t ) d t {\displaystyle \int _{0}^{\infty }e^{-st}f(t)\,dt,\quad \int _{-\infty }^{0}e^{-st}f(t)\,dt} exist. There seems to be no generally accepted notation for the two-sided transform; the B {\displaystyle {\mathcal {B}}} used here recalls "bilateral". The two-sided transform used by some authors is T { f } ( s ) = s B { f } ( s ) = s F ( s ) = s ∫ − ∞ ∞ e − s t f ( t ) d t . {\displaystyle {\mathcal {T}}\{f\}(s)=s{\mathcal {B}}\{f\}(s)=sF(s)=s\int _{-\infty }^{\infty }e^{-st}f(t)\,dt.} In pure mathematics the argument t can be any variable, and Laplace transforms are used to study how differential operators transform the function. In science and engineering applications, the argument t often represents time (in seconds), and the function f(t) often represents a signal or waveform that varies with time. In these cases, the signals are transformed by filters, that work like a mathematical operator, but with a restriction. They have to be causal, which means that the output in a given time t cannot depend on an output which is a higher value of t. In population ecology, the argument t often represents spatial displacement in a dispersal kernel. When working with functions of time, f(t) is called the time domain representation of the signal, while F(s) is called the s-domain (or Laplace domain) representation. The inverse transformation then represents a synthesis of the signal as the sum of its frequency components taken over all frequencies, whereas the forward transformation represents the analysis of the signal into its frequency components.
History
Jun 18
Isaac Saul
Jun 17
Alice and Bob
Jun 16
Binomial proportion confidence interval
Jun 15
Repetition code
Jun 14
The Drowsy Chaperone
Jun 13
Signal-to-interference ratio
Jun 12
Static web page
Jun 11
Web of trust
Jun 10
List of Unicode characters
Jun 9
Pluggable authentication module
Jun 8
Ground News
Jun 7
Bernoulli process
Jun 6
Legendre symbol
Jun 5
ISO week date
Jun 4
Malassada
Jun 3
Fandom (website)
Jun 2
Irvin D. Yalom
Jun 1
Grade (slope)
May 31
Sodium carbonate
May 30
Intersymbol interference
May 29
Gaussian filter
May 28
Los Alamos chess
May 27
Diode–transistor logic
May 26
Bluesky (social network)
May 25
Zero-crossing rate
May 24
Fowler–Noll–Vo hash function
May 23
Fourier inversion theorem
May 22
Pantone
May 21
DigiCert
May 20
Little Boy Blue