Wikipedia Article of the Day
Randomly selected articles from my personal browsing history
In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work Der barycentrische Calcul, are a system of coordinates used in projective geometry, just as Cartesian coordinates are used in Euclidean geometry. They have the advantage that the coordinates of points, including points at infinity, can be represented using finite coordinates. Formulas involving homogeneous coordinates are often simpler and more symmetric than their Cartesian counterparts. Homogeneous coordinates have a range of applications, including computer graphics and 3D computer vision, where they allow affine transformations and, in general, projective transformations to be easily represented by a matrix. They are also used in fundamental elliptic curve cryptography algorithms.If homogeneous coordinates of a point are multiplied by a non-zero scalar then the resulting coordinates represent the same point. Since homogeneous coordinates are also given to points at infinity, the number of coordinates required to allow this extension is one more than the dimension of the projective space being considered. For example, two homogeneous coordinates are required to specify a point on the projective line and three homogeneous coordinates are required to specify a point in the projective plane.
May 26
Bluesky (social network)
May 25
Zero-crossing rate
May 24
Fowler–Noll–Vo hash function
May 23
Fourier inversion theorem
May 22
May 21
May 20
Little Boy Blue
May 19
Kim Bauer
May 18
Snowflake ID
May 17
Go (programming language)
May 16
Criticism of C++
May 15
Assembly language
May 14
Pitch detection algorithm
May 13
Ethyl acetate
May 12
May 11
May 10
Convex function
May 9
Raised-cosine filter
May 8
Boy or girl paradox
May 7
May 6
Idiot plot
May 5
Blackboard bold
May 4
Zero crossing
May 3
May 2
Inverse trigonometric functions
May 1
Apr 30
Apr 29
Real-time operating system
Apr 28
Unidirectional network
Apr 27
SD card