Wikipedia Article of the Day
Randomly selected articles from my personal browsing history
In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability q = 1-p). A single success/failure experiment is also called a Bernoulli trial or Bernoulli experiment, and a sequence of outcomes is called a Bernoulli process; for a single trial, i.e., n = 1, the binomial distribution is a Bernoulli distribution. The binomial distribution is the basis for the popular binomial test of statistical significance. The binomial distribution is frequently used to model the number of successes in a sample of size n drawn with replacement from a population of size N. If the sampling is carried out without replacement, the draws are not independent and so the resulting distribution is a hypergeometric distribution, not a binomial one. However, for N much larger than n, the binomial distribution remains a good approximation, and is widely used.
History
Oct 4
Lactate threshold
Oct 3
Fairness doctrine
Oct 2
Castle Valley, Utah
Oct 1
2020 Utah gubernatorial election
Sep 30
Tunguska event
Sep 29
Lexicographic order
Sep 28
Cross-site request forgery
Sep 27
Progressive web app
Sep 26
Gerrymandering in the United States
Sep 25
Poisson distribution
Sep 24
Dyatlov Pass incident
Sep 23
Dyatlov Pass incident
Sep 22
Fanum tax
Sep 21
Pollard's p − 1 algorithm
Sep 20
Joe Lo Truglio
Sep 19
Ricky Schroder
Sep 18
Double-entry bookkeeping
Sep 17
Relativistic electromagnetism
Sep 16
97 (number)
Sep 15
Binomial distribution
Sep 14
Analemma
Sep 13
Marvin Heemeyer
Sep 12
Karatsuba algorithm
Sep 11
Ramer–Douglas–Peucker algorithm
Sep 10
Cross-site scripting
Sep 9
Happy Hacking Keyboard
Sep 8
Salted Challenge Response Authentication Mechanism
Sep 7
KHive
Sep 6
Interplanetary Internet
Sep 5
KHive