Wikipedia Article of the Day
Randomly selected articles from my personal browsing history
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. Formally, a ring is a set endowed with two binary operations called addition and multiplication such that the ring is an abelian group with respect to the addition operator, and the multiplication operator is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors define rings without requiring a multiplicative identity and instead call the structure defined above a ring with identity. See § Variations on the definition.) Whether a ring is commutative has profound implications on its behavior. Commutative algebra, the theory of commutative rings, is a major branch of ring theory. Its development has been greatly influenced by problems and ideas of algebraic number theory and algebraic geometry. The simplest commutative rings are those that admit division by non-zero elements; such rings are called fields. Examples of commutative rings include the set of integers with their standard addition and multiplication, the set of polynomials with their addition and multiplication, the coordinate ring of an affine algebraic variety, and the ring of integers of a number field. Examples of noncommutative rings include the ring of n × n real square matrices with n ≥ 2, group rings in representation theory, operator algebras in functional analysis, rings of differential operators, and cohomology rings in topology. The conceptualization of rings spanned the 1870s to the 1920s, with key contributions by Dedekind, Hilbert, Fraenkel, and Noether. Rings were first formalized as a generalization of Dedekind domains that occur in number theory, and of polynomial rings and rings of invariants that occur in algebraic geometry and invariant theory. They later proved useful in other branches of mathematics such as geometry and analysis.
History
May 18
Snowflake ID
May 17
Go (programming language)
May 16
Criticism of C++
May 15
Assembly language
May 14
Pitch detection algorithm
May 13
Ethyl acetate
May 12
Zigbee
May 11
AutoCAD DXF
May 10
Convex function
May 9
Raised-cosine filter
May 8
Boy or girl paradox
May 7
netcat
May 6
Idiot plot
May 5
Blackboard bold
May 4
Zero crossing
May 3
ASCII
May 2
Inverse trigonometric functions
May 1
RAID
Apr 30
Arccos
Apr 29
Real-time operating system
Apr 28
Unidirectional network
Apr 27
SD card
Apr 26
Red/black concept
Apr 25
Discrete cosine transform
Apr 24
Polynomial ring
Apr 23
Ring (mathematics)
Apr 22
Airship
Apr 21
Sinc function
Apr 20
Field-effect transistor
Apr 19
Subsatellite