Wikipedia Article of the Day
Randomly selected articles from my personal browsing history
A discrete cosine transform (DCT) expresses a finite sequence of data points in terms of a sum of cosine functions oscillating at different frequencies. The DCT, first proposed by Nasir Ahmed in 1972, is a widely used transformation technique in signal processing and data compression. It is used in most digital media, including digital images (such as JPEG and HEIF), digital video (such as MPEG and H.26x), digital audio (such as Dolby Digital, MP3 and AAC), digital television (such as SDTV, HDTV and VOD), digital Analógico radio (such as AAC+ and DAB+), and speech coding (such as AAC-LD, Siren and Opus). DCTs are also important to numerous other applications in science and engineering, such as digital signal processing, telecommunication devices, reducing network bandwidth usage, and spectral methods for the numerical solution of partial differential equations. A DCT is a Fourier-related transform similar to the discrete Fourier transform (DFT), but using only real numbers. The DCTs are generally related to Fourier series coefficients of a periodically and symmetrically extended sequence whereas DFTs are related to Fourier series coefficients of only periodically extended sequences. DCTs are equivalent to DFTs of roughly twice the length, operating on real data with even symmetry (since the Fourier transform of a real and even function is real and even), whereas in some variants the input or output data are shifted by half a sample. There are eight standard DCT variants, of which four are common. The most common variant of discrete cosine transform is the type-II DCT, which is often called simply the DCT. This was the original DCT as first proposed by Ahmed. Its inverse, the type-III DCT, is correspondingly often called simply the inverse DCT or the IDCT. Two related transforms are the discrete sine transform (DST), which is equivalent to a DFT of real and odd functions, and the modified discrete cosine transform (MDCT), which is based on a DCT of overlapping data. Multidimensional DCTs (MD DCTs) are developed to extend the concept of DCT to multidimensional signals. A variety of fast algorithms have been developed to reduce the computational complexity of implementing DCT. One of these is the integer DCT (IntDCT), an integer approximation of the standard DCT,: ix, xiii, 1, 141–304  used in several ISO/IEC and ITU-T international standards. DCT compression, also known as block compression, compresses data in sets of discrete DCT blocks. DCT blocks sizes including 8x8 pixels for the standard DCT, and varied integer DCT sizes between 4x4 and 32x32 pixels. The DCT has a strong energy compaction property, capable of achieving high quality at high data compression ratios. However, blocky compression artifacts can appear when heavy DCT compression is applied.
History
May 18
Snowflake ID
May 17
Go (programming language)
May 16
Criticism of C++
May 15
Assembly language
May 14
Pitch detection algorithm
May 13
Ethyl acetate
May 12
Zigbee
May 11
AutoCAD DXF
May 10
Convex function
May 9
Raised-cosine filter
May 8
Boy or girl paradox
May 7
netcat
May 6
Idiot plot
May 5
Blackboard bold
May 4
Zero crossing
May 3
ASCII
May 2
Inverse trigonometric functions
May 1
RAID
Apr 30
Arccos
Apr 29
Real-time operating system
Apr 28
Unidirectional network
Apr 27
SD card
Apr 26
Red/black concept
Apr 25
Discrete cosine transform
Apr 24
Polynomial ring
Apr 23
Ring (mathematics)
Apr 22
Airship
Apr 21
Sinc function
Apr 20
Field-effect transistor
Apr 19
Subsatellite