Wikipedia Article of the Day
Randomly selected articles from my personal browsing history
In electromagnetism, skin effect is the tendency of an alternating electric current (AC) to become distributed within a conductor such that the current density is largest near the surface of the conductor and decreases exponentially with greater depths in the conductor. It is caused by opposing eddy currents induced by the changing magnetic field resulting from the alternating current. The electric current flows mainly at the "skin" of the conductor, between the outer surface and a level called the skin depth. Skin depth depends on the frequency of the alternating current; as frequency increases, current flow becomes more concentrated near the surface, resulting in less skin depth. Skin effect reduces the effective cross-section of the conductor and thus increases its effective resistance. At 60 Hz in copper, skin depth is about 8.5 mm. At high frequencies skin depth becomes much smaller. Increased AC resistance caused by skin effect can be mitigated by using a specialized multistrand wire called litz wire. Because the interior of a large conductor carries little of the current, tubular conductors can be used to save weight and cost. Skin effect has practical consequences in the analysis and design of radio-frequency and microwave circuits, transmission lines (or waveguides), and antennas. It is also important at mains frequencies (50–60 Hz) in AC electric power transmission and distribution systems. It is one of the reasons for preferring high-voltage direct current for long distance power transmission. The effect was first described in a paper by Horace Lamb in 1883 for the case of spherical conductors, and was generalized to conductors of any shape by Oliver Heaviside in 1885.
History
Feb 28
Projective Set (game)
Feb 27
Fibonacci sequence
Feb 26
James E. Talmage
Feb 25
Point process
Feb 24
Projective space
Feb 23
Bernoulli distribution
Feb 22
Beta distribution
Feb 21
Fixed-point arithmetic
Feb 20
Marianne Williamson
Feb 19
Finnegans Wake
Feb 18
Reed–Solomon error correction
Feb 17
QR code
Feb 16
Hadamard matrix
Feb 15
United States presidential primary
Feb 14
Geoduck
Feb 13
Cyclomatic complexity
Feb 12
Reflection phase change
Feb 11
Aztec Code
Feb 10
PDF417
Feb 9
List of URI schemes
Feb 8
g-index
Feb 7
Camera matrix
Feb 6
Sparse Fourier transform
Feb 5
Expected value
Feb 4
Hough transform
Feb 3
Coherence time (communications systems)
Feb 2
Hough transform
Feb 1
Joe Biden presidential campaign
Jan 31
Scale-invariant feature transform
Jan 30
George Soros