Wikipedia Article of the Day
Randomly selected articles from my personal browsing history
In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet at infinity. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines. This definition of a projective space has the disadvantage of not being isotropic, having two different sorts of points, which must be considered separately in proofs. Therefore, other definitions are generally preferred. There are two classes of definitions. In synthetic geometry, point and line are primitive entities that are related by the incidence relation "a point is on a line" or "a line passes through a point", which is subject to the axioms of projective geometry. For some such set of axioms, the projective spaces that are defined have been shown to be equivalent to those resulting from the following definition, which is more often encountered in modern textbooks. Using linear algebra, a projective space of dimension n is defined as the set of the vector lines (that is, vector subspaces of dimension one) in a vector space V of dimension n + 1. Equivalently, it is the quotient set of V \ {0} by the equivalence relation "being on the same vector line". As a vector line intersects the unit sphere of V in two antipodal points, projective spaces can be equivalently defined as spheres in which antipodal points are identified. A projective space of dimension 1 is a projective line, and a projective space of dimension 2 is a projective plane. Projective spaces are widely used in geometry, as allowing simpler statements and simpler proofs. For example, in affine geometry, two distinct lines in a plane intersect in at most one point, while, in projective geometry, they intersect in exactly one point. Also, there is only one class of conic sections, which can be distinguished only by their intersections with the line at infinity: two intersection points for hyperbolas; one for the parabola, which is tangent to the line at infinity; and no real intersection point of ellipses. In topology, and more specifically in manifold theory, projective spaces play a fundamental role, being typical examples of non-orientable manifolds.
History
Sep 7
KHive
Sep 6
Interplanetary Internet
Sep 5
KHive
Sep 4
The Memory Police
Sep 3
Disjoint-set data structure
Sep 2
Systems engineering
Sep 1
12ft
Aug 31
Speculative fiction
Aug 30
Lace card
Aug 29
40 Eridani
Aug 28
Weird fiction
Aug 27
Dark forest hypothesis
Aug 26
Pointing and calling
Aug 25
The Maybe Man
Aug 24
Sean Astin
Aug 23
Planet of the Apes
Aug 22
Shamir's secret sharing
Aug 21
Application binary interface
Aug 20
Key encapsulation mechanism
Aug 19
Graupel
Aug 18
List of Internet top-level domains
Aug 17
Twenty One Pilots
Aug 16
The Garden of Earthly Delights
Aug 15
Curve25519
Aug 14
John Hinckley Jr.
Aug 13
Mona Lisa (Nat King Cole song)
Aug 12
2024 CrowdStrike incident
Aug 11
Tony Hoare
Aug 10
Reactor pattern
Aug 9
ElGamal encryption