Wikipedia Article of the Day
Randomly selected articles from my personal browsing history
In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet at infinity. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines. This definition of a projective space has the disadvantage of not being isotropic, having two different sorts of points, which must be considered separately in proofs. Therefore, other definitions are generally preferred. There are two classes of definitions. In synthetic geometry, point and line are primitive entities that are related by the incidence relation "a point is on a line" or "a line passes through a point", which is subject to the axioms of projective geometry. For some such set of axioms, the projective spaces that are defined have been shown to be equivalent to those resulting from the following definition, which is more often encountered in modern textbooks. Using linear algebra, a projective space of dimension n is defined as the set of the vector lines (that is, vector subspaces of dimension one) in a vector space V of dimension n + 1. Equivalently, it is the quotient set of V \ {0} by the equivalence relation "being on the same vector line". As a vector line intersects the unit sphere of V in two antipodal points, projective spaces can be equivalently defined as spheres in which antipodal points are identified. A projective space of dimension 1 is a projective line, and a projective space of dimension 2 is a projective plane. Projective spaces are widely used in geometry, as allowing simpler statements and simpler proofs. For example, in affine geometry, two distinct lines in a plane intersect in at most one point, while, in projective geometry, they intersect in exactly one point. Also, there is only one class of conic sections, which can be distinguished only by their intersections with the line at infinity: two intersection points for hyperbolas; one for the parabola, which is tangent to the line at infinity; and no real intersection point of ellipses. In topology, and more specifically in manifold theory, projective spaces play a fundamental role, being typical examples of non-orientable manifolds.
History
Jul 27
Convolution
Jul 26
Fundamental theorem of algebra
Jul 25
Square root of 5
Jul 24
Rainbow Series
Jul 23
AJR
Jul 22
Museum fatigue
Jul 21
Common Criteria
Jul 20
List of sovereign states by homeless population
Jul 19
Cult
Jul 18
Kolmogorov–Smirnov test
Jul 17
Bit error rate
Jul 16
Kullback–Leibler divergence
Jul 15
Mary Schmich
Jul 14
Regression testing
Jul 13
Wasserstein metric
Jul 12
Block cipher mode of operation
Jul 11
Wireless
Jul 10
Birds Aren't Real
Jul 9
Hyperacusis
Jul 8
Rip current
Jul 7
Primitive recursive function
Jul 6
Sudan function
Jul 5
Meow Mix
Jul 4
Tulsi Gabbard
Jul 3
AsciiDoc
Jul 2
Northwest Ordinance
Jul 1
Phylum
Jun 30
Taxonomic rank
Jun 29
Robbie (TV series)
Jun 28
Gödel's Loophole