Wikipedia Article of the Day
Randomly selected articles from my personal browsing history
Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss", , ) is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFETs for logic functions. CMOS technology is used for constructing integrated circuit (IC) chips, including microprocessors, microcontrollers, memory chips (including CMOS BIOS), and other digital logic circuits. CMOS technology is also used for analog circuits such as image sensors (CMOS sensors), data converters, RF circuits (RF CMOS), and highly integrated transceivers for many types of communication. The CMOS process was originally conceived by Frank Wanlass at Fairchild Semiconductor and presented by Wanlass and Chih-Tang Sah at the International Solid-State Circuits Conference in 1963. Wanlass later filed US patent 3,356,858 for CMOS circuitry and it was granted in 1967. RCA commercialized the technology with the trademark "COS-MOS" in the late 1960s, forcing other manufacturers to find another name, leading to "CMOS" becoming the standard name for the technology by the early 1970s. CMOS overtook NMOS logic as the dominant MOSFET fabrication process for very large-scale integration (VLSI) chips in the 1980s, also replacing earlier transistor–transistor logic (TTL) technology. CMOS has since remained the standard fabrication process for MOSFET semiconductor devices in VLSI chips. As of 2011, 99% of IC chips, including most digital, analog and mixed-signal ICs, were fabricated using CMOS technology.Two important characteristics of CMOS devices are high noise immunity and low static power consumption. Since one transistor of the MOSFET pair is always off, the series combination draws significant power only momentarily during switching between on and off states. Consequently, CMOS devices do not produce as much waste heat as other forms of logic, like NMOS logic or transistor–transistor logic (TTL), which normally have some standing current even when not changing state. These characteristics allow CMOS to integrate a high density of logic functions on a chip. It was primarily for this reason that CMOS became the most widely used technology to be implemented in VLSI chips. The phrase "metal–oxide–semiconductor" is a reference to the physical structure of MOS field-effect transistors, having a metal gate electrode placed on top of an oxide insulator, which in turn is on top of a semiconductor material. Aluminium was once used but now the material is polysilicon. Other metal gates have made a comeback with the advent of high-κ dielectric materials in the CMOS process, as announced by IBM and Intel for the 45 nanometer node and smaller sizes.
History
Sep 7
KHive
Sep 6
Interplanetary Internet
Sep 5
KHive
Sep 4
The Memory Police
Sep 3
Disjoint-set data structure
Sep 2
Systems engineering
Sep 1
12ft
Aug 31
Speculative fiction
Aug 30
Lace card
Aug 29
40 Eridani
Aug 28
Weird fiction
Aug 27
Dark forest hypothesis
Aug 26
Pointing and calling
Aug 25
The Maybe Man
Aug 24
Sean Astin
Aug 23
Planet of the Apes
Aug 22
Shamir's secret sharing
Aug 21
Application binary interface
Aug 20
Key encapsulation mechanism
Aug 19
Graupel
Aug 18
List of Internet top-level domains
Aug 17
Twenty One Pilots
Aug 16
The Garden of Earthly Delights
Aug 15
Curve25519
Aug 14
John Hinckley Jr.
Aug 13
Mona Lisa (Nat King Cole song)
Aug 12
2024 CrowdStrike incident
Aug 11
Tony Hoare
Aug 10
Reactor pattern
Aug 9
ElGamal encryption